
Locating changeable message signs for advanced
traffic information and management systems

Liping Fu, Jeffrey Henderson, and Shuo Li

Abstract: This paper presents an optimization model for locating changeable message signs (CMSs) on an integrated
freeway-arterial network. Compared with existing models, the proposed model represents a well-balanced compromise
between computational efficiency required to solve problems of realistic size, and model realism to ensure the quality
of solutions. The model has three unique features: (1) it recognizes that locating CMSs is a planning problem that must
take into account both current and future needs and benefits, (2) it evaluates benefits of CMSs over multiple time periods
with different traffic distributions, and (3) it explicitly considers inherent variations in incident characteristics across
links and over time. A sensitivity analysis is performed to examine the potential impacts on optimal CMSs locations
resulting from uncertainties in various input parameters, such as traffic demand, incident attributes, and driver behaviour.
Lastly, the proposed model is applied to the Highway 401 express-collector freeway system in Toronto for relocating
the existing CMSs.
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Résumé : Cet article présente un modèle d’optimisation de l’emplacement des panneaux à messages variables (« CMSs »)
sur un réseau général autoroutier. Par rapports aux modèles existants, le modèle proposé représente un compromis équi-
libré entre l’efficacité computationnelle requise pour résoudre des problèmes d’une dimension réaliste et le réalisme du
modèle qui permet d’assurer la qualité des solutions. Le modèle présente trois caractéristiques uniques : (1) il reconnaît
que l’emplacement des « CMSs » est une question de planification qui doit tenir compte des besoins et des avantages
actuels et futurs, (2) il évalue les avantages des « CMSs » sur plusieurs périodes et pour différentes répartitions de trafic,
et (3) il tient compte des variations inhérentes aux caractéristiques des incidents quant aux liaisons routières et dans le
temps. Une analyse de sensibilité est effectuée pour étudier les incidences potentielles des incertitudes de divers paramètres
d’entrée tels que la demande de trafic, les attributs des incidents et le comportement des conducteurs sur l’emplacement
optimal des « CMSs ». Finalement, le modèle proposé est mis en œuvre sur le système d’artères collectrices de l’autoroute
401 à Toronto pour changer l’emplacement des « CMSs » existants.

Mots-clés : panneaux à messages variables (« CMSs »), optimization de l’emplacement, affectation de trafic, théorie des
files d’attente.

[Traduit par la Rédaction] Fu et al. 663

Introduction

Changeable message signs (CMSs), also known as vari-
able message signs (VMS), are becoming popular as one of
the primary means for transportation agencies to disseminate
travel and traffic information to motorists. Under the umbrella
of intelligent transportation systems (ITS), CMSs constitute
a key element in dynamic traffic management and informa-
tion provision functions. The CMSs are commonly used to

inform motorists of varying traffic, roadway, and environ-
mental conditions and provide information on the location
and severity of incidents and the expected delay. They can
also be used to advise motorists of alternate routes in the
event of an incident, construction, or a roadway closure.

The effectiveness of CMSs, however, depends on how
many CMSs are installed and where the CMSs are located in
the network. Theoretically, the benefits from CMSs can be
maximized, if the whole network of roads is instrumented
with CMSs. This is, however, practically impossible because
of the high costs of installing CMSs. Furthermore, past studies
have suggested that excessive use of CMSs could lead to
diminishing returns in benefits, and even worse, could be
counter-effective because of the behavioural response of drivers
to real-time information (Wardman et al. 1997).

The planning of locations of CMSs is challenged by a
variety of issues, such as how to model the response of drivers
to changeable message sign (CMS) messages, how to model
random incidents that vary by time and space, and how to
model the impacts of incidents on traffic. The state-of-art
practice has mostly relied on the experience and judgement
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of planners, and thus is not the result of any comprehensive
and systematic analysis. Abbas and McCoy2 were the first in
literature to study the problem of optimizing CMSs locations in
a road network. Their location optimization objective was to
maximize the potential reduction in vehicle delay because
of traffic diversion to alternative routes in response to inci-
dent information provided by CMSs. A simple deterministic
queuing model was used to estimate delays with and with-
out CMSs in a linear freeway network. However, it was not
clear how issues, such as, congestion on alternative routes,
over-saturated conditions, incident rates on individual links,
and dependency of diversion rate on potential savings were
handled in their model.

Another relevant study was initiated by Chiu et al.3, who
proposed a bilevel stochastic integer programming model for
the CMS-location problem. The location optimization problem
was realized at the upper level to maximize the total user
benefit of real-time information from CMSs. The responses
(route choices) of users to incident conditions and informa-
tion were represented at the lower level as a user-optimal-
dynamic traffic assignment problem. The expected total user
benefit, corresponding to a given location solution, was
calculated based on a sample of benefits. Each benefit was
estimated by generating a random incident on a network link
and solving the resulting dynamic traffic assignment prob-
lem. The model also suffers from several limitations. First,
as acknowledged by the authors, the whole process is extremely
computationally intensive because of the need to evaluate a
large number of candidate location plans, consider sufficient
number of incident realizations for each location solution,
and perform a simulation-based dynamic traffic assignment
procedure for each incident realization. Second, their loca-
tion benefit model was based on a route choice assumption
that all users have perfect knowledge and real-time informa-
tion on the network and incident conditions and possess the
ability to anticipate choice of routes of other users and
choose their optimal routes accordingly. Finally, it is unclear
if it is practical or necessary to apply such a complex model,
seemingly designed for operational management and control
purposes, for solving the CMS location problem, which is
essentially a planning problem.

In this paper, we propose a model that is aimed to strike a
balance between computational efficiency and model com-
plexity. The major contribution of our research is in extending
the work of Abbas and McCoy2 in three important aspects.
First, we explicitly consider time-of-day variation in travel
demand distribution by introducing a multi-period benefit
estimation model. Second, we incorporate a logit route choice
model in determining time-dependent division rate under
incident conditions. Lastly, the proposed model explicitly
takes into account inherent variations in incident characteris-
tics across links and over time, such as, incident rate, inci-
dent duration,and capacity reduction.

The paper is organized as follows. We first describe the
individual components of the proposed model including (i) a
time-dependent queuing model for estimating user delay with
and without the presence of a CMS, (ii) a dynamic traffic

diversion model that relates the probability for a vehicle to
divert from the incident link to its potential travel time
savings, and (iii) a sequential optimization model for identi-
fying the best locations for a given number of CMSs. A
sensitivity analysis then follows to examine the impacts of
inherent variations in input parameters on the optimal loca-
tions of CMSs.

Problem description and formulation

The CMS-location problem can be loosely defined as fol-
lows. Given a road network consisting of a set of road seg-
ments or links, identify a subset of links for installing a
given number of CMSs so that the total benefit that could be
obtained from these installed CMSs is maximized. While
this definition is easy to comprehend, its formulation requires
a formal specification of the objective measure or location
optimization criterion — total benefit.

As discussed in Introduction, CMS is a media through
which traffic and other relevant information can be timely
delivered to drivers for improved safety and reduced travel
time. As a result, the potential benefits that can be obtained
from CMSs also depend on the type of information delivered
by a CMS. In this research, we assume that CMS is mainly
used for disseminating incident related information, and there-
fore its benefits can be measured by the expected total reduc-
tion in user delay or total travel time savings (TTS), which
are due to traffic diversion from the congested incident loca-
tions to less congested alternative routes induced by incident
and (or) route guidance information from the CMS. Note
that this assumption is reasonable because incidents are the
major source of traffic delay (Shrank and Lomax 2002).
Other types of CMS benefits related to recurrent congestion,
scheduled lane and (or) capacity reductions (e.g., construc-
tion), special events, and weather conditions are not consid-
ered in this research, but these can be easily incorporated
into the proposed model once relevant benefit models are
available.

To formulate the travel time savings, a number of issues
still need to be addressed, such as, (i) how to consider the
spatial and temporal variation of traffic (ii) how to model the
uncertainty of incident occurrences (e.g., where, when, and
how severe), and (iii) how to estimate who will pass the
links with CMSs and the incident links and at what time,
and who will divert. To address these issues, the following
assumptions are introduced:
• A typical average day over the planning horizon is selected

in calculating the total travel time savings. The analysis
day is divided into different periods with each period
having a constant traffic demand. It is further assumed
that traffic demand by period over the area of interest, in
the form of origin–destination (O–D) matrix, is available
from some existing transportation planning models.

• A representative incident with known attributes, such as,
duration and severity (or capacity reduction) are consid-
ered for each link. It is also assumed that incident occur-
rence rate for each link in the network is known. Note that
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both incident attributes and occurrence rate can be esti-
mated using historical incident data. As a result, the expected
number of incidents that could occur on a specific link a
over a specific period p, na

p can be calculated as follows:

[1] n x l ra
p p p

a a= ∆

where ∆p is the duration of time period p, which is
assumed to be known; x p is the original link arrival rate
(vehicles/h); la is the length of link a (km); ra is the
incident rate for link a (number of incidents per million
vehicle kilometres).

• Drivers’ routing decisions under an incident can be cap-
tured by a diversion model. A detailed discussion on this
assumption will be provided later.

• No other traffic information sources are available to the
drivers.
With these assumptions, we can now formally define the

CMS location problem as follows: identify the location of a
given number of CMS in a road network so that the follow-
ing objective function for travel time savings for all p time
periods and all links is maximized:

[2] TTS TTS( ) ( )z z= ∑∑ a
p

ap

where z is a vector representing CMS location solution, z =
{za}, where za = 1 if link a is allocated with a CMS, 0 other-
wise. Note that Σza is the number of CMSs to be allocated
and TTSa

p( )z is the expected travel time savings for a spe-
cific link a during time period p, which is a function of the
location solution, f. Equation [3] can be used to estimate
TTSa

p( )z as follows:

[3] TTSa
p

a
p

a
p

a
pD D n( ) ( � )z = −

where Da
p is the total vehicle delay caused by a given incident

on link a, during time period p, without CMS information
(vehicles/h). Note that Da

p is a function of location solution
(z) and �Da

p is the total vehicle delay caused by a given inci-
dent on link a, during time period p, with CMS information
(vehicles/h). Note that �Da

p is a function of location solution
(z). The expected number of incidents on link a during time
period p (eq. [1]) is represented by na

p.

Incident delay without information on changeable message
signs

The first element in the proposed formulation (eqs. [2]
and [3]) is the total delay that drivers would experience
when traversing a specific link (a) in a specific period (p) if
an incident had occurred, but the drivers were not informed,
Da

p. This total user delay can be estimated using a time-
dependent deterministic queuing model (HCM 2000). De-
pending on the incident occurrence time and the level of
traffic demand at the incident period(s), different queue for-
mation patterns could develop, which can be classified into
three cases: case I, off-peak; case II, peak under-capacity; or
case III, peak over-capacity. The queuing diagrams for these
cases under specific conditions are shown in Fig. 1, where
the shaded area represents the total user delay (Da

p).
The incident occurrence time, denoted by to (h), is defined

for each of the three cases as follows:

[4] t
t p

o
case I

case II, case III
= →





0

0[ ]

where t p represents the end of the peak period p under con-
sideration and start of the off-peak period p + 1. Note that
for the case I (off-peak), it is assumed that all links are
under-saturated in normal traffic conditions and the incident
occurrence time has negligible effect on the user delay.
Therefore, to simplify calculations, only incidents that occur
at the beginning of the time period will be considered (to = 0).
It is further assumed that, for the peak period cases (case II
and III), the incident occurrence time is uniformly distrib-
uted from zero to the period duration under consideration.
To determine a value for user delay for the peak period
cases, a range of incident occurrence times must be consid-
ered and the user delay results must be averaged for each of
these occurrence times. An arithmetic mean of user delays
for a given number of incident occurrence times is evalu-
ated. This same method is applied in the following section
for estimating delay with information.

The cumulative arrivals and departures at the incident
occurrence time (to), denoted by Narr

o and Ndep
o , respectively,

can be calculated using eqs. [5] and [6], as

[5] N x tp
arr
o o= case I, case II, case III

[6] N
x t

S t

p

dep
o

o

o

case I, case II

case III
=





where xp is the flow rate on specific link during normal traffic
conditions (nonincident) during period p. The arrival (flow)
rate is assumed to be known for each of the time periods
(vehicles/h); and S is the maximum capacity of the specific
link (vehicles/h).

Note from eq. [5] that, for the under-capacity cases (case I
and II), the cumulative arrivals are the same as the cumula-
tive departures at the incident occurrence time. For case III,
however, the cumulative number of arrivals is greater than
the cumulative number of departures because the link is over
capacitated.

Similar to the occurrence time, the time of incident clear-
ance (t c) and the corresponding cumulative number of depar-
tures (Ndep

o ) is defined for each of the three cases as follows:

[7] t tc o= + τ case I, case II, case III

[8] N N Cdep
c

dep
o= + τ case I, case II, case III

where τ is the time required to clear the incident (h); C
is the reduced capacity of the link during the incident
(vehicles/h). Note that case-specific values could be used
for C.

Based on the assumption that the original arrival rate for a
specific link (x p) and the duration of each time period (t p)
are both known, the cumulative number of arrivals at the end
of the peak period p under consideration, denoted by Narr

p

can be determined from the following equation:

[9] N x tp
arr
p p= case II, case III

Recall that for the off-peak incident case, case I, the inci-
dent is assumed to have occurred at the start of the time period
under consideration. Therefore, for case I, the end of the

© 2007 NRC Canada

Fu et al. 653



© 2007 NRC Canada

654 Can. J. Civ. Eng. Vol. 34, 2007

Fig. 1. Vehicle queuing diagram under incident conditions for (a) case I, (b) case II, and (c) case III.



time period will occur after the incident queue clearance
time. If the time required to clear the incident queue is long
and (or) the accident occurrence time is close to the end of
the period, the queue will extend to the next period. As a
result, the uniform arrival assumed in case I is no longer
valid and case II should be used.

The incident-queue-clearance time (tq) and the cumulative
number of vehicles at the queue clearance time (N q) are
determined from the following equations:

[10] t

S C t
S x

x t t x t S C t Ctq

p

p p p p

=

−
−

− − + − ++

( )
( )

( ) ( )

c

o c o

case I

1

( )
( ) ( ) ( )

( )

S x
x x t S C t t

S x

p

p p p

p

−
− + − −

−

+

+

+

1

1

1

case II

cas
c o

e III















[11] N
x t

x t x t t
q

p

p p p p=
+ −





+

q

q

case I

case II, case III1( )

Note that, with eqs. [4]–[11], all the points of the queuing
diagram can be determined for each of the three cases.

It is important to note that the delay estimation method-
ology discussed above does not account for queue spill-back
and its possible effects on delay estimation. Queue spill-
back may cause three possible effects on delay estimation.
The first effect is that queue spill-back may block neigh-
bouring intersections, which would then reduce the capacity
of neighbouring links and cause additional delays. Queue
spill-back may also induce traffic diversion from the incident
link, which would lead to an arrival rate at the incident link
lower than what would normally be expected under non-
incident conditions. Lastly, queue spill-back may block diver-
sion access points, such as, freeway off ramps, which will
prevent drivers from alternating their routes. These effects
are difficult to accurately represent in a delay estimation
model, thus, requiring detailed knowledge of network geom-
etry and driver behaviour.

Incident delay with changeable message sign information
The second component in eq. [3] is the total delay, �Da

p,
caused by an incident on a specific link, a, in a specific time
period, p, provided the drivers had been informed about the
incident by a given set of CMSs located over the network.
As discussed previously, this total delay depends on how
much traffic will divert to alternative routes, which is a func-
tion of many factors, such as, CMS location, incident char-
acteristics, traffic pattern, and availability of diverting points
and alternative routes. In this research, we propose an itera-
tive method that takes into account the time-dependent nature
of incident delay and traffic routing.

The proposed method can be best illustrated by using a
simple example. Consider that a total of three CMSs will be
located on a network shown in Fig. 2a. For any given CMS
location solution (e.g., the one shown in the figure), we need
to determine the total incident delay if an incident occurs on
a specific link. Figure 2b shows the corresponding queuing
diagram for the traffic of the incident link, which is based on
the simplest off-peak situation (case I) described in the pre-
vious section. An incident occurs at time to, and after a time

lag, which includes incident detection time, information
processing time, and CMS activating time, diversion
because of CMS starts at time t s . Note, however, that the
incident link does not experience a reduction in arrival rate
until t s + T1 because of the time lag from the closest CMS
(CMS 1) to the incident link. The same is true for additional
reduction in arrivals caused by CMS 2 and CMS 3.

Determining the actual reduced flow rate is not straight-
forward. This is because the reduction in flow rate depends
on the proportion of the traffic, or more accurately, the path
flow traversing the CMS and the incident link, diverted be-
cause of CMS information; whereas traffic diversion is a
function of travel time savings, which in turn depends on
how much traffic is diverted. We solve this interdependency
problem by constructing the reduced flow rate curve from
left to right starting at t s + T1 at a small time interval (e.g.,
5 min). At the start of each interval, the proportion of flow
diverted for each O–D pair is determined using the diversion
model (discussed in the following section) on the basis of
the expected delay for a vehicle arriving at the time instance.
The cumulative number of arrivals is then calculated based
on the reduced arrival rates of all O–D flows passing the
CMS and the incident link. This cumulative arrival function
is then used to estimate the expected delay for the subse-
quent interval. This process continues until the reduced arrival
curve, �( )x t , intersects with the cumulative departure curve.

Diversion model
As described in the previous section, to quantify the inci-

dent delay under CMS information, a diversion model is
required to predict the number of vehicles that would divert
to alternative routes owing to message activation of the CMS
during incident conditions. When a driver is provided with
information from a CMS that an incident has occurred along
the intended travel path, he (she) makes a decision to either
stay on the same route or divert to an alternative route. This
decision depends on various factors, such as, severity of the
incident, current extent of queue caused by the incident, the
driver’s experience and familiarity of the network, and inci-
dent characteristics delivered via the CMS. Therefore, modeling
the underlying decisions is a significant challenge because
of the behavioural complexity of the drivers’ response to
incidents and incident information (Wardman et al. 1997). In
the two existing studies on the CMS location problem, Abbas
and McCoy2 assumed a constant fixed diversion rate regard-
less of the availability of alternative routes, severity of incidents,
and various other factors; Chiu et al.3 applied a bounded
route choice model, assuming a driver would divert to an
alternative route if the expected travel time to be saved
exceeds a certain threshold.

In this study, we propose to use a simplified-discrete-
choice model to capture the major characteristics of drivers’
response behaviour under incident conditions. The model
was motivated by the empirical work of Wardman et al.
(1997), and it was assumed that the probability for a driver
to choose to divert depends on the expected travel time saving
from diverting with the following logit form:

[12] P tk m S k m t
, ( )

1

e , ( )
=

+
−

1
α β
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where Pk,m(t) is the probability for a vehicle, arriving at time
t and traveling through CMS k on path m, to divert to an
alternative route; Sk,m(t) is the travel time savings ratio defined
in eq. [13] as the expected savings of using the alternative
route divided by the travel time of the alternative route; and
α and β are model parameters.

The travel time savings ratio, Sk,m(t), based on the expected
delay that vehicles joining the incident queue will experi-
ence and the travel time through the shortest alternative route,
is defined as follows:

[13] S t
T t T

Tk m
k m k m

k m
,

, ,

,
( )

)
=

−( *

*

where Tk,m(t) is the expected travel time a vehicle joining the
queue will experience at time t (hours); Tk m,

* is the travel
time (h) of the shortest alternative route, not traversing the
incident link, from CMS k to the destination node of path m.

The expected travel time experienced by a vehicle joining
the queue, Tk,m(t), is based on two components. The first
component is the expected travel time from the CMS link,
through the incident link to the destination node of the path
under incident-free conditions. The second component is based

on the expected queuing delay for a vehicle if it were to con-
tinue on its original path.

The diversion model represented by eq. [12] suggests that
the proportion of vehicles that would divert increases as the
travel-time savings increase. The relationship between diver-
sion probability or rate and travel time savings is intuitively
correct: the higher the travel time savings, the higher the
probability for a vehicle to divert; drivers are usually reluc-
tant to change routes with a small percentage of savings. For
example, for the case of α = 5 and β = 5, when an alternative
route is estimated to provide 50% travel-time savings, there
would be 50% chance for the driver to make a diversion.
The parameters α and β are essentially to model variations in
drivers’ characteristics (e.g., aggressiveness) and information
attributes (e.g., types, level of reliability, frequency, etc.).
Realistic estimates of these model parameters could be
obtained through a statistical analysis of survey results, as in
Wardman et al. (1997). A sensitivity analysis is performed in
this study to evaluate the potential impact of these parame-
ters on the final CMS location solutions.

Arrival time and reduced flow rate because of a CMS may
be determined by applying eq. [12], derived for a single
path, to all paths, as follows:
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Fig. 2. Incident delay under changeable message signs (CMSs) information. (a) Location of three CMSs on a network and (b) corre-
sponding queuing diagram for the traffic of the incident link.



[14] � ( ) [ ( )], ,x t f P tk k m k m
m

= −∑ 1

where xk(t) is the flow on the incident link, or reduced
arrival rate, for vehicles that traverse both CMS k and the
incident link (vehicles/h); and fk,m is the flow on the mth
path passing both CMS k and the incident link (vehicles/h).

In determining the reduced arrival rate at a given link be-
cause of all CMSs, it is assumed that drivers would defer
their decision until they reach the CMS that is closest to the
incident link. That is, for a path flow that traverses several
CMSs, only the CMS closest to the incident link has an
effect on the diversion rate. An activating zone is also con-
sidered so that only CMS within a certain distance of the
incident will display information.

Path-based traffic assignment
To estimate the delay caused by incidents, network traffic

for the time periods of interest must be obtained first. Typically,
network traffic is obtained using a link-based traffic assign-
ment method (e.g., Frank–Wolfe method), which produces
link flow estimates by assigning a matrix of origin–destination
(O–D) flows to individual links based on Wardrop’s user-
equilibrium (UE) assumption (Sheffi 1985). The resulting
information (i.e., link traffic flow) is, however, not sufficient
for the proposed benefit model, as it requires not only the
traffic flow on individual links but also the individual path
flows between the origins and destinations. Path flows are
needed in both the prediction of traffic diversion and the
alternative route travel times, as discussed in the previous
sections.

Generally, there are two classes of path-based assignment
methods: incremental and user equilibrium. The incremental
method performs successive all-or-nothing assignments on a
parsed O–D trip matrix (Sheffi 1985). As the incremental
assignment does not always result in a UE condition, there-
fore, it will not be considered further. Several user-equilibrium
path-based methods for traffic assignment have been devel-
oped, including a modified Frank–Wolfe approach by Chen
and Lee4. However, the gradient-projection (GP) method pro-
posed by Jayakrishnan et al. (1994) for traffic assignment
has so far proven to be the most efficient one and will be
used here. A detailed discussion can be found in Henderson
(2004).

Effect of diversion on alternative routes
The presented diversion model approximates the rate at

which drivers divert from their originally intended route to
one or more alternatives during incident conditions. How-
ever, no prediction is made as to what those alternative routes
are, since there are presently no reliable route choice models
during traffic equilibrium disruption. Additionally, the in-
creased travel time experienced by drivers on these alterna-
tives are not considered in the travel time savings calculation
of eq. [2].

To partially account for this impact, an alteration to the
diversion rate and incident link-based travel-time savings is
proposed that reassigns diverted traffic to the shortest alter-

native route between the CMS link and the trip destination.
A diversion equilibrium is approximated through successive
iterations of Tk,m(t) and Tk m,

* in eq. [13]. During the itera-
tions, link-travel times are updated to reflect volume
changes resulting from traffic diversion. These updated link-
travel times may then be included in eq. [2] to adequately
reflect the negative impact of diverted traffic on otherwise
unaffected links, that is,

[15] TTS (TTS TTImax = −∑∑ a
p

a
p

ap
)

where TTIa
p is the travel time increase on alternate routes

caused by incident on link a during time period p.

Solution procedure

The CMS location optimization problem formulated in the
previous section belongs to the general class of location
problems that have been researched extensively by the oper-
ations research (OR) community. The general location prob-
lem is computationally intractable and is commonly solved
using heuristic algorithms. In this paper, we applied a greedy
algorithm that allocates one CMS at a time and fix the allo-
cated CMS in the subsequent steps of allocating other CMSs.
A detailed description of this algorithm is available in
Henderson (2004), which also includes a more advanced
solution method based on genetic algorithm (GA). The greedy
method was chosen because it most closely resembles the
administrative decision-making process that incrementally adds
changeable message signs to a road network. The incremen-
tal method was used for traffic assignment to identify path
flows. This method was observed to produce link volumes
close to that of the Frank–Wolfe equilibrium traffic assign-
ment and a path-based traffic assignment procedure for the
sample network used in the following section. The overall
solution process has been implemented in a software tool
called OptimalCMS and used in the following sensitivity
analysis.

Sensitivity analysis

The proposed model for evaluating the expected reduction
in delay, due to the installation of CMSs, is deterministic in
nature, assuming perfect information on input parameters,
such as, O–D demand, incident conditions, and traffic diver-
sion behaviour. In practice, however, most of these parame-
ters are inherently uncertain because of various factors, such
as, insufficient relevant data to estimate the model parame-
ters, errors in both the raw data and model specification, and
errors in predicting future traffic demands and conditions.
The objective of this section is to quantify the potential
effects of these variations on CMS location. These effects
will be explored using both a hypothetical network (case A)
and a section of Highway 401 in Toronto (case B).

Case A — sample network
Figure 3 shows the layout of one of the road networks

used in our sensitivity analysis, which is a modified version
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of a sample network used in the integration simulation model
(M. Van Aerde 2000). The network represents a freeway-
arterial system consisting of 56 nodes and 124 links. An
east–west freeway is located in the middle of the network
surrounded by arterial links with a total length of 6.4 km.

Also shown in the network are 14 O–D zones as trip gen-
erators. Four time periods are considered: AM peak, midday
off-peak, PM peak, and overnight off-peak with period dura-
tions of 2, 7, 3, and 12 h, respectively. The O–D demand
pattern is created so that a large number of trips travel east-
bound (from zone 2 to zones 4, 5, and 6) during the AM
peak period and, conversely, a large number of trips travel
westbound (from zone 5 to zones 1, 2, and 3) during the PM
peak period. The rate of AM demand is monotonically higher
than the PM demand. Also, the demand matrix for modelling
uncertainty in traffic demand and driver behaviour is different
(larger demand) than the demand matrix for modelling
uncertainty in incident attributes.

The base incident rate was set at 2.9 incidents per million
vehicle kilometres according to a report from National High-
way Traffic Safety Administration (TRB 2000). Equation [1]
was used to convert this value, ra, to incidents over a given
time period, na

p. Other base values used for this sample net-
work and applied to all incident links are capacity reduction
of 0.8, incident duration of 30 min, detection time of 10 min,

and processing and CMS activating time of 5 min. These val-
ues are similar to incident characteristics used in other
relevant literature (Abbas and McCoy2; Chiu et al.3). Impact
of variations in these parameters on optimal CMSs locations
is also analysed in this section.

Comparison to heuristic methodology
In the absence of a methodical approach for optimizing

CMSs locations, traffic managers usually locate CMSs in a
heuristic ad-hoc way based on freeway link traffic volume
and diversion opportunities at downstream off-ramps. To
illustrate the difference between the proposed model and this
ad-hoc approach, we consider the greedy allocation results
for the base case of the sample network. Table 1 shows the
order of CMS allocation based on the proposed model and
the revised order based on link traffic volume. It is reason-
able to assume that there is a good opportunity for traffic to
divert to an alternative route from each of these links, since
they were all selected in the greedy allocation process.

As seen in Table 1, there is a significant difference between
CMS allocation based on traffic volume and allocation based
on the proposed model. Using the proposed model, freeway
links with the highest volume are not necessarily first to be
assigned a CMS.
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Fig. 3. Sample network.



Optimal number of changeable message signs
Figure 4 shows the relationship between the total benefits

of CMSs and the total number of CMSs installed in the net-
work. A significant increase in the total network benefit
resulted from the addition of the first 3 CMSs to the net-
work (an increased travel time saving of about 62% from 1 CMS
to 2 CMSs). The marginal network benefits from adding
more CMSs tend to become less significant and level off
after the third CMS is added. This result is expected because
when the coverage of CMSs reaches to a certain level, majority
of the O–D flows will be covered by the CMSs, thus the
benefits of adding more CMSs become less. This general
phenomenon of diminishing returns is commonly seen in
economics and suggests the potential of obtaining the opti-
mal number of CMSs for a given network is by trading off
the installation costs and the resulting benefits.

Consideration of multiple time periods
Most existing models for optimizing CMS locations con-

sider only a single time period, AM or PM peak, and ignore
the traffic exposure for the remainder of the day. The pro-
posed model, however, is able to consider the entire day in
the optimization process. The CMS allocation results based
on a single time period compared with the results for all
time periods are shown in Table 2.

It is evident that only considering a single time period in
the optimization process does not produce the best CMS
locations, since demand is directional and the highest vol-
ume freeway links during the AM peak period are not the
highest volume freeway links during the PM peak period.
Also, incidents during the off-peak period had a negligible
impact on the final location solutions of the optimization
process, as the estimated benefit was several orders of mag-
nitude smaller than the benefit predicted during the peak
periods.

Uncertainty in traffic demand
The uncertainty in traffic demand was modelled by con-

sidering random fluctuations in the O–D matrix. Variations
of +10%, –10%, ±5%, ±10%, and ±20% to the base O–D
demand matrix were evaluated. The variation in each case
was developed by increasing or decreasing each entry in the
base O–D matrix (AM, PM, and off-peak) by a certain amount.

For example, for the case of +10% variation, each demand
entry was increased by a random amount from 0% to 10%
inclusive. The –10% variation in demand was determined in
a similar manner. The ±5%, ±10%, and ±20% variations in
demand were also calculated similar to the +10% variation
with the exception of the interval of equal likelihood, which
is increased from 0% → 10% to –10% → 10% for the ±10%
variation. The results of the greedy allocation procedure for
each of the demand variations are shown in Table 3.

As seen in Table 3, variations in demand do not signifi-
cantly effect the allocation of changeable message sign loca-
tions. A slight variation in CMS allocation order was observed,
but this was only for a few locations with marginal travel
time savings benefit.

Uncertainty in incident conditions
Four incident attributes, including incident rate, incident

duration, incident occurrence time, and capacity reduction,
were modelled for uncertainty. Since the incident occurrence
time, as mentioned earlier, is assumed to be distributed uni-
formly over the time period of concern, it is not considered
hereafter. The uncertainty in incident rate was modelled by
considering random fluctuations in the link exposure-based
incident rate. Fluctuations of +10%, –10%, +50%, –50%,
+100%, and –100% were considered and developed, as pre-
viously described for other variations. The CMS location
results for variations in link incident rates are shown in
Table 4.

The optimal CMS locations are insensitive to smaller vari-
ations of 10% and 50% in the link incident rate, however,
larger variations seem to affect the allocated CMS locations.
The reason for the effect on CMS locations is the linear rela-
tionship between incident rates and travel-time savings; the
increase in travel-time savings is directly proportional to
the increase in link-incident rates. The link exposure-based
incident-rate variable may be stochastic instead of determin-
istic as was assumed.

An 80% reduction in link capacity was used for the base
case. Four additional cases were generated: the first two
cases involved monotonic reductions of 40% and 60% for all
links; the other two cases had variations similar to the ran-
dom fluctuations in congestion level. A random decrease in
capacity with equal likelihood from 50% to 70% inclusive
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Fig. 4. Marginal benefit of changeable message signs (CMSs)
allocation.

Allocated CMSs
at greedy
iteration No.

Link ID
(base case)

Daily traffic
volume

CMSs order
based on daily
traffic volume

1 119 22 500 6
2 28 21 295 7
3 116 53 310 1
4 25 47 930 2
5 155 20 345 8
6 45 17 980 9
7 50 14 350 10
8 158 24 105 5
9 16 47 790 3
10 21 46 750 4

Table 1. Changable message signs (CMSs) allocation order, pro-
posed model versus link volume.



© 2007 NRC Canada

660 Can. J. Civ. Eng. Vol. 34, 2007

for one case and 40% to 80% for the other case was gener-
ated independently for each of the links. The CMS location
results for capacity reduction variations were identical for
the first six CMSs allocated and only the order of allocation
for the last four varied from the base case. This indicates
that the optimal CMS location is insensitive to uniform
changes in capacity reduction and relatively insensitive to
random fluctuations in capacity reduction. Again, a slight
variation in CMS allocation order was observed but only for
a few locations that produced a small marginal benefit.

Variations in incident duration were evaluated using 30 min
for the base incident duration case and uniform durations of
40 and 50 min for additional uniform-incident duration cases.
Random fluctuations, similar to those discussed for capacity
reduction, were modelled using two additional random dura-
tion cases with equal likelihood for durations between 30
and 50 min inclusive for the first random case and between
20 and 60 min inclusive for the second random case. The
results of the allocation procedure, similar to those of varia-
tions in link capacity reduction, show identical CMS loca-
tions for the first six CMSs allocated and differing order for
the last four CMSs allocated. Therefore, with the exception
of a few locations with marginal benefit, the allocated CMS
location is insensitive to both monotonic and random varia-
tions in incident duration.

Case B — Toronto network
The Toronto case will now be considered for additional

analysis. The complete dataset (Fig. 5) provided by the
Ministry of Transportation of Ontario consists of 14 160
nodes, 37 386 links, and 69 448 O–D pairs extracted from
the EMME/2 transportation planning software. This study
area is prohibitively large for model execution, therefore, a
smaller network (Fig. 5) mainly comprised of Highway 401
and its nearby arterials were extracted for computational
analysis. This reduced the number of nodes, links, and O–D
pairs to 961, 2363, and 6149, respectively, with the longest
of these links being 3.45 km and the shortest being 0.04 km.
Also, the link free-flow speeds range from 40 ~ 70 km/h for
the arterials and ramps and 110 km/h for the freeway links.
The smaller study area is approximately 23.2 km in the east–
west direction, from west of Highway 410 to east of Allen
Road, and 17.4 km from the most southerly node to the most
northerly node.

The Highway 401 demand matrix was determined by per-
forming path-based assignment for the complete dataset and
saving the path information for each O–D pair. The paths,
referenced as a succession of nodes, were truncated at the
edges of the study area. The truncation was performed by
eliminating all nodes up to the first node that was part of the
smaller network. The demand for this new O–D pair was

Base case +10% –10% –5% ~ +5% –10% ~ +10% –20% ~ +20%

Greedy iteration No. Link MS Link MS Link MS Link MS Link MS Link MS

1 119 3123 119 3489 119 2997 119 3254 119 3628 119 2448
2 28 1942 28 2087 28 1675 28 1921 28 1918 28 2123
3 116 849 116 933 116 812 116 865 116 891 116 772
4 25 560 25 601 25 508 25 562 25 563 25 575
5 133 406 133 449 133 372 133 422 133 415 133 331
6 155 268 155 308 155 242 155 279 155 312 45 248
7 45 224 45 240 45 197 45 221 45 223 155 222
8 39 142 50 144 50 134 39 147 39 144 50 129
9 19 64 21 72 19 57 19 58 19 63 21 70
10 21 55 19 66 21 51 21 55 21 55 19 63

Note: MS, marginal savings (vehicle·h/d). Values in bold represent changed links for CMSs.

Table 3. Changeable message signs (CMSs) allocation results for variable congestion levels.

All time periods AM peak Midday PM peak Overnight

Greedy iteration No. Link MS Link MS Link MS Link MS Link MS

1 119 3123 28 1941 45 9 119 3120 16 0
2 28 1942 25 556 16 2 116 841 45 0
3 116 849 45 223 155 1 133 407 125 0
4 25 560 39 142 50 1 155 266 155 0
5 155 406 21 55 160 1 19 63 50 0
6 45 268 145 30 21 0 176 28 160 0
7 50 224 75 29 116 0 55 20 105 0
8 158 142 125 9 125 0 58 14 174 0
9 16 64 12 7 25 0 16 9 68 0
10 21 55 35 4 106 0 145 5 80 0

Note: MS, marginal savings (vehicle·h/d).

Table 2. Greedy allocation results based on time period.



then set to the associated path flow. Demands with common
origins and destinations were combined to reduce the size of
the derived demand matrix. The peak hour demand (AM) for
this matrix is approximately 152 000 vehicles and the asso-
ciated daily demand is approximately 948 500 vehicles.

Optimal changeable message signs locations and marginal
benefits

Similar to the previous analysis, we first run our location
optimization program to locate ten CMSs to this network. It
was found that most of the CMS have been allocated to free-
way links upstream of an interchange. This is expected as
interchanges represent an excellent diversion opportunity. The
first five CMS locations are described as follows (Fig. 5).
• First CMS is located on westbound Highway 401 just

before Allen Road. This location captures most of the
westbound freeway traffic while providing a diversion
opportunity to Allen Road.

• Second CMS is located on westbound Highway 401 just
after the on-ramp from southbound Highway 400. High-
way 400 as well as Highway 401 traffic pass this point
and can be informed of conditions on the Highway 401
main route and Highways 409 and 427 alternative route.

• Third CMS is located on the eastbound Highway 401 after
the Highway 427 interchange. The Highways 401 and 427
traffic may divert at a minor interchange downstream of
the CMS link.

• Fourth CMS is located on eastbound Highway 401 at the
Highway 400 interchange, which has a high traffic vol-
ume but poorer diversion opportunities than the first three
CMS allocated.

• Fifth CMS is located at the beginning of the eastbound
Highway 409, providing two excellent diversion opportu-
nities through eastbound Highway 409 or southbound
Highway 427. However, the traffic volume is much lower
than the first four locations that CMS were located.
Similar to the results shown in Fig. 4, our analysis of

this realistic network also shows that the total benefits of
CMS is an increasing function of the total number of CMS
installed in the network. The general trend is the same with
a very high benefit for the first few CMS installed, followed
by decreasingly marginal gains. Practically no further net-
work benefit is observed between the ninth and tenth CMS
installation. The benefit of adding CMS to Highway 401 is
approximately 1.52 million vehicle·h/year when considering
an α and a β of 5. This benefit is the difference between the
incident-induced delay without CMS information (4.44 million
vehicle·h/year) and the incident-induced delay in the pres-
ence of CMS information (2.92 million vehicle·h/year).

The network benefit may be converted to a dollar value by
assuming a value of time, e.g., CAN$10/h. Using this value
of time, the benefit attained by installing one CMS, approxi-
mately 640 000 → 1 010 000 vehicle·h, may be converted to
a range of CAN$6.4 – CAN$10.1 million. After the installa-
tion of the second CMS the benefit increased to the range of
CAN$8.5 – CAN$11.9 million. Again, a cost-benefit analysis
would be complementary in determining the optimal number
of CMS to install.

Uncertainty in diversion model
The diversion model contains a high degree of uncer-

tainty. To identify the impact of the diversion model on
CMS allocation, CMSs were allocated on the basis of differ-
ent α and β values. Recall from eq. [12] that increasing α
will monotonically decrease the diversion rate for all paths
and increasing β will increase the diversion rate, depending
on the travel time for the shortest alternative route. There-
fore, a comparison of the marginal benefits of each alloca-
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Fig. 5. Highway 401 network extracted from the City of Toronto
network.

Base case +10% +50% –50% +100% –100%

Greedy iteration No. Link MS Link MS Link MS Link MS Link MS Link MS

1 119 559 119 545 119 735 119 549 119 605 119 283
2 28 417 28 444 28 375 28 381 28 461 28 218
3 116 138 116 134 116 173 116 114 116 160 155 56
4 25 103 25 107 25 94 25 83 25 116 45 41
5 155 49 155 48 155 65 155 62 45 50 116 33
6 45 43 45 46 45 39 45 44 155 44 50 29
7 50 25 50 27 158 33 158 31 50 26 158 19
8 158 24 158 24 50 22 50 26 160 22 21 17
9 16 15 21 15 19 18 16 13 16 22 25 4
10 21 15 16 15 21 16 21 12 21 17 19 3

Note: MS, marginal savings (vehicle·h/d). Values in bold represent changed links for CMSs.

Table 4. Changeable message signs (CMSs) allocation results for variable link incident rates.
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tion procedure is not relevant. Instead the focus will be on a
comparison of the chosen locations (Table 5).

As seen in Table 5, the CMS locations are highly sensitive
to changes in the diversion model parameters. Generally, as
β increases the actual travel time savings ratio, Sk,m, is less
significant because α – βSk,m becomes very large in the
negative direction and e Sk mα β− , approaches zero, so more
and more incident links have close to 100% diversion. Since
the savings ratio becomes less significant, the volume and
number of incident links for which the CMS is effective be-
comes the predominant factor in locating the CMS. There-
fore, as β increases the CMSs are located closer to the start
of the paths to maximize the number of links and traffic vol-
ume for which they are effective. Also, it was observed that
these CMSs links have longer alternative routes and lower
travel-time savings ratios compared with CMSs links allo-
cated at lower values of β.

Inclusion of alternative path travel time
As previously indicated, the increased delay incurred on

alternative routes may be a factor in CMS-location deci-
sions. Therefore, a comparison was made between chosen
CMS locations with and without the inclusion of the nega-
tive impact that a diversion has on alternative route travel
times. Recall that both methods include the travel times on
alternate routes, but the consideration of alternate path travel
times are used along with diverted traffic information in
determining diversion rates. It was found that the inclusion
of alternate path travel time slightly increases the travel-time
benefit. This can be expected because the iterative approach
to determining diversion rates would prevent excessive
re-routing of traffic to congested alternate paths, however,
the change is not enough to significantly alter the solution
benefit.

The locations identified by these two approaches were
also compared, and it was found that the results with and
without the consideration of alternate path travel time are
quite different. This result is reasonable when considering
that the optimal solution may not be unique. That is, there
may be many different combinations of solutions that would
produce the same objective function value. Although the
solutions may be different, the actual end result is the same.

Conclusions and future research

Changeable message signs (CMSs) are becoming an im-
portant component of ITS applications, such as, advanced
traffic management and traveler information systems (ATMS/
ATIS). By providing travelers with accurate, timely, and reli-
able traffic information, safety and efficiency of the road
network can be improved. The effectiveness of CMSs,
however, depend on how many CMSs are installed and where
the CMSs are located. This paper presents an optimization
model that can be used to systematically locate CMS in an
integrated freeway-arterial network. The proposed model
consists of four components including (1) a multi-period
user-equilibrium traffic assignment procedure to estimate traffic
volumes on individual links and path flows between individual
O–D pairs; (2) a dynamic diversion model that relates the
probability for a vehicle to divert, from an incident path to
an alternative route with the potential for travel time savings;
(3) a time-dependent queuing model to estimate delays with
and without the presence of information; and (4) a sequen-
tial optimization model to identify the best locations for a
given set of CMSs.

A sensitivity analysis on the potential impacts of the vari-
ations in various parameters on the CMSs locations has
resulted in the following findings: (1) the optimal locations
of CMSs are insensitive to variations or estimation errors in
traffic demand and incident conditions with the possible
exception of large variations in link incident rates; (2) the
location algorithm is highly sensitive to the time period con-
sidered, however, off-peak periods have little effect on the
optimal CMS location; (3) the location algorithm is also
highly sensitive to the diversion model parameters.

The model presented in this paper is by no means com-
plete and several modifications could be made in the future
to improve the results. First, more research is needed to
accurately predict diversion model parameters under inci-
dent conditions with CMSs information. Second, the benefit
of other CMSs uses (e.g., environmental information) needs
to be quantified before they are included in a CMS location
model. Lastly, other traffic diversion models that take into
account repetition effect of vehicles passing multiple CMSs
should be considered.

Model parameters

Greedy iteration No. α = 5; β = 5 α = 5; β = 10 α = 10; β = 5 α = 10; β = 10

1 7628 7628 7628 7628
2 9980 7547 29007 9980
3 7547 9980 7593 7547
4 9986 9986 7607 9986
5 29486 29469 9969 29486
6 28974 28974 7615 28974
7 7615 10250 10250 9774
8 9972 7559 10089 10421
9 10250 7615 28039 7575
10 7597 7597 25008 9966

Note: Values in bold represent changed links compared to the first solution (α β= = 5).

Table 5. Links allocated with changeable message signs (CMSs) under variable diversion
model parameters.
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